Financial Securities Ontology and Taxonomy

Financial Securities Ontologies:

An Exploration
Mike Bennett

Hypercube Limited

May 2007

Abstract
This paper looks at the considerations involved in modelling business semantics for financial securities. Some basic terms are explained, followed by an introduction to the underlying principles of business domain modelling.

An example is given of a few items in an Equity taxonomy, showing how the taxonomy is derived from hierarchical catalogues of distinct real world entities in the terms defined for ontology modelling.

Some conclusions are given about the type of model that would best satisfy the industry requirement for securities data semantics. There is also some exploration about the use of UML Data Models, and an Appendix with more detail on tools and transformations.

Some additional notes are included on the possible routes to deploy and consume an ontology within the context of data model development.

Executive Summary

This paper is an exploration of the requirements for business domain modelling in the financial services industry. The basic principles of business domain modelling are explained, principally with reference to static business domain models, usually known as taxonomies and ontologies. These are explained in detail.

An ontology is based on the answer to the question "What is a thing?" in the problem domain. This leads to a modelling of the business realities which are later to be used as the basis for data model design (leading to messaging or database development for example). By implication, if an ontology is based around distinct hierarchies of real world "thing", then the simpler exercise of producing a taxonomy of terms must follow the same structure. This is because a taxonomy is the basis for an ontology.

An example is given of a few sets of items in an Equity ontology, showing how the taxonomy is derived from hierarchical catalogues of distinct real world entities such as financial instruments, contractual terms, cash flows and equity itself. A key departure from conventional data models is that things which are of a different nature are maintained in distinct hierarchies of "Thing", and not combined as they might be in a data model design.

Findings

The business reality of financial instruments is not straight forward. There are a number of items which would belong in separate sets of descriptive data in a true taxonomy, even if subsequent data models were to combine many of these for design purposes.

An important thing to note is that data models are by their nature a designed artefact, with re-use of similar terms and other design features. Just as a software program should follow a formal statement of business requirements, so a good data model should follow a formal statements of the reality that the data are to represent. An ontology, or a less feature-rich taxonomy, should itemise and model the real world entities, with no consideration for the model design. A data model, by virtue of its design, is a less strong definition of the business semantics in the problem domain.

Because of its nature a data model will therefore be a less effective format than a taxonomy or ontology for development of financial securities data sources or messages, as it does not adequately cater for business semantics.

CONTENTS

2Executive Summary

Introduction
4
Taxonomy and Ontology
4
Taxonomy
4
Ontology
4
Structural Domain Models Summary
5
Securities Data Ontology Example: Equities
6
Practical Development
11
Developing the Ontology
11
Developing a Data Model
11
Summary
13
Recommendations
14
Ontology and Taxonomy
14
Use of Standards in creating Taxonomies
14
Appendix I - Tools and Formats
15
References
16

Introduction

This paper looks at what it would take to create structural business domain models for the financial industry, specifically for the modelling of financial securities. The domain model formats of interest are taxonomies and ontologies, using the tools recommended by the World Wide Web Consortium (W3C, Reference 1).
Taxonomy and Ontology

Taxonomies and ontologies are formats for modelling a business problem domain. Specifically they provide for the modelling of the static or structural aspects of the problem domain (as distinct from dynamic models of business process). As such, these formats provide a business requirements model for the design of data models, database structures and reference data within messages.

The tools and notation used in this paper are based on the Web Ontology Language (OWL, reference 2), a widely accepted standard for ontology creation. This language creates ontology relationships among terms defined within the Resource Description Framework (RDF Schema, reference 3) taxonomy standard.

The terms "Taxonomy" and "Ontology" are used with varying definitions across the industry. The definitions given below will be followed in this paper.

Taxonomy

A taxonomy is a hierarchical tree structure of entities. It models hierarchical relationships between terms in the domain, with the most general at the top and the most specific at the bottom. A good example is the Linnaean taxonomy of species.

The taxonomy is a hierarchy of things in the real world, and all items within one taxonomic hierarchy are things of like nature. Defining a taxonomy is a prerequisite to defining an ontology which adds information about those same real world things.

Ontology

An ontology is a model which defines relationships between items, and logical information about those items, in a way which is machine readable. The ontology, like a taxonomy, contains definitions of things in the real world. Therefore the starting point for an ontology is a taxonomy - the hierarchical class structure of those real world things.

An ontology is structured around a universe of possible "things". In the Owl notation, these are defined as a sub-class of the class called owl:Thing. The only things which are not in this sub-class are items descriptive within the model such as names, notes and properties, as well as the class owl:Nothing, which is defined as the class of things which are not a thing.

A suitable definition from the Artificial Intelligence community (reference 4) is that an ontology is a model which has:

· Formal explicit description of concepts in a domain of discourse (referred to as Classes)

· Properties of each concept (class) describing features and attributes (known variously as slots, properties or roles)

· Restrictions on those properties (known as facets).

Structural Domain Models Summary

Taxonomies and ontologies are models which allow the business meanings of terms to be defined at varying levels of detail. These meanings can then be carried through to development of data stores or messages, or can be referenced back from those stores or messages to ensure that terms are unambiguous and meaningful.

An ontology adds logical information to a taxonomy of terms, helping to define what those terms mean in a way that can be used in machine processing, for example by deriving a data model from that ontology. It is important to note that all the logical information stored in an ontology is descriptive of the real world - there should be no "design", as there would be in a data model: there is no expectation of efficiency, such as would be attained by re-use of similar components. A good ontology effectively plays the role of a requirements specification for data models and the technical developments which use those models.

No prior knowledge of taxonomy and ontology theory or tools is assumed in the sections which follow, however readers are expected to be familiar with graphical modelling principles, particularly the Unified Modelling Language (UML).

Securities Data Ontology Example: Equities

This section develops an example ontology for equities. To develop this or any ontology we start with the question "What is a thing?" in our domain of discourse (in this case the domain of equity financial securities) and create a taxonomy of those things. The aim to is identify all the separate kinds of real thing that exist in the business world, for which data needs to be communicated and managed.

A financial security is a kind of thing. A hierarchy of financial securities is provided by the Classification of Financial Instruments (CFI) standard ISO 10962 (reference 5). This standard provides a well-established taxonomy of financial instruments.

The CFI Standard cannot be extended to include all the terms about securities because these terms are not the same kind of things as the security itself, they are a kind of thing called contractual terms (formal undertakings by the issuer to the holder of the security). They belong elsewhere in the taxonomy of things.

Equity terms are not the same kind of thing as an equity instrument. Nor are they the same kind of thing as the actual equity in a company.

In the ontological view, then, there is a kind of thing called the security, and it has a relationship to a kind of thing called terms. It also clearly has a relationship with another kind of thing called equity i.e. the actual equity in the company, a proportion of which is represented by this particular issue of equity securities under the terms set out in the prospectus. The terms themselves also have a relation to a kind of thing called cash flows. These kinds of thing - the instrument, formal terms, cash flows and financial consideration (debt, equity or whatever) among others have relationships which, between them, help to define what an equity security is in the real world.

The first step to creating any ontology that represents this is to define a taxonomy of real world things in the business domain. Figure 1 shows a possible taxonomy:

[image: image1.png]= owlThing

© Commody

® ContractualTerm

® Entitiement

® et

@ FinancislConsideration
© Finsramert |
® Indicator)
® iformation

® Juisdiction

® orgaission

) cntoting

® right

Figure 1: A taxonomy of "things" in the financial instrument world

This can be expanded into hierarchies of things (classes) in the domain, as long as each thing in a given hierarchy is of the same nature as the class to which it belongs. An expansion of this is shown in Figure 2.

[image: image2.png]= owl:Thing
© Commody
= @ ContractualTerm
® siateraiContractualTerm
= @ InstrumentTerm
= @ EntitlementTerm
® DebtinterestTerm
® cqiypividendtom
= @ HolderTerm
@ RestrictionTerm
= @ HoldingsTerm
® coptarem
DebtHoldngsTern
® EqutyrodngsTern
® srscgriem
® Entitiement
® et
@ FinancislConsideration
=@ Fomcainirmat)
Debtnsiment
® EntitlementsTnstrument
= ® Equtyistnmen:
® Convertibleshare.
® viscellaneousshare.
© ordinayshare
® PreferenceConvertibelshare
® Preferenceshare.
® FreferredConvertileshare.
< Preferredshare.
® e
e —
® wiscellaneousTnstrument
@ Optionsinstrament

Figure 2: A partially expanded hierarchy of classes for the taxonomy

Note that the terms set out in the prospectus for a new instrument are legally binding contractual terms. These therefore fall under the hierarchy of real world things called contractual terms, which includes things like bilateral agreements, licence agreements and the like which are mostly of no interest to us. The financial instrument terms set out the rights accruing to the holder as a result of holding the equity (such as voting rights) and also for certain classes of share, the rights to expect fixed dividend payments and to have first call on the capital of the company in the event of it's winding up. Terms therefore include rights to certain cash flows (another kind of Thing). There are also restrictions on the holder, which may apply to any kind of instrument, not just equities.

The ontology tool can be used to model all these relationships as true business relationships. At no point should the model include any design, optimisation or re-use of similar components - these are all exercises for the data model design, and can be safely carried out once the business reality is modelled.

There is a hierarchy of actual types of financial instrument based on the CFI taxonomy. It can be seen that many of the types of equity shown are classifications based on the terms set out within the universe of contractual terms. The way in which the contractual terms themselves are shown here is one of several ways in which it could be done - there are no standards for this.

A third kind of thing is the financial consideration, which may include equity, debt, or other kinds of consideration such as cash and property. Again there are no standards for this taxonomy at present and the terms shown are just an illustration. The idea is to provide a working answer to the question "What kind of thing is the equity in a company?"

A business definition of an equity instrument can then be modelled using relationships between the items in our taxonomy, to make the beginnings of an ontology.

A business definition of equity would be something like: "An equity is a financial instrument setting out a number of terms which define rights and benefits to the holder in relation to their holding a portion of the equity within the issuing company".

This can be represented graphically as shown in Figure 3.

Figure 3: Graphical Representation of Equities business definition

This can be represented in a formal ontology as shown the screen shot in Figure 4. This diagram format was created by TopBraid Composer (reference 6), and is a graphical view of a standard OWL ontology model. The box at the top shows part of the overall technical framework within which these items are modelled (RDF Schema), and can be ignored from a business point of view.

In the diagram format used in Figure 4, arrows with triangular heads show a taxonomic "inheritance" relationship, indicating that something "is a kind of" the class of thing which the arrow points to. Other relationships are shown with the more conventional style of arrow, and are labelled according to what they are. In the OWL notation these are also shown as properties of the class itself (indicated within the box). Another type of property allows for the definition of descriptive attributes of the item, such as the number of voting rights per share. Many other properties can be defined in this way, which are not shown in this example for simplicity. These two types of property (relationships to other "things" and information about the thing) are defined in OWL as Object Properties and Attribute Properties respectively. There are other types of property in OWL which supplement these two types of property by adding richer information about the nature of the relationship.

[image: image3.png]@ rdfsiResource
7= aFsscomment : refs:Lteral
|1 estisDefinedsy : rdfsiResource.
|1 refstiabel © reisiLiteral
|1 efsisesalsa : rofs:Resource

oniiThing
® FinancialConsideration ® ContractusiTerm
© Equty ® InstrumentTerm
® HoldingsTerm © HolderTerm
® EquityoldingsTerm © Finandiallnstrument @ RestrictionTerm
| ExutyHoldings Terms RelateTa + EQuty [Security.HasTerms : FolderTerm
[votingRightsPershare : int

© Equitylnstrument.
[ExutyInstrument HasRights : EqUEyHodngsTerm

Figure 4: Graphical representation of the definition of an equity in OWL.

Note that there are a number of contractual terms which apply to more instrument classes than just equity, for example restrictions on the holder. These are shown in relation to the "Financial Instrument" class of things since they apply to an instrument regardless of what type it is.

There are other kinds of ontology feature besides the ones shown here. These include logical statements about whether items are mutually exclusive ("Disjoint" in OWL parlance) and so on. Each of these kinds of statement can be used to make a progressively more accurate statement about what sorts of "thing" in the real world can be considered as belonging to the class of things named in that part of the model.

Classes in an ontology are based on set theory, with logical definitions identifying what individual belongs in a given set or class. In this way it is possible for example to define what individuals belong in the set of all things that are preferred shares, by defining things about their relationships to the kinds of contractual terms that apply to preferred shares. The presence or absence of the "disjoint" statement noted above determines whether belonging to one set means that a thing can't also belong to another set, or whether it can. These are all logical definitions of restrictions and relationships as they apply in the real business world, and are nothing to do with how the security data is to be modelled in system or message developments.

Taking the example of a preferred share, there are also terms setting out the commitments by the issuer to pay regular, usually fixed dividends (as is also the case for bonds). These can be modelled in terms of a relationship to another part of the contractual terms hierarchy, setting out entitlement terms (Figure 5).

[image: image4.png]oniiThing

T F

® ContractusiTerm

® FinancialConsideration

© Financiallnstrument

[Security.HasTerms

HolderTerm

® InstrumentTerm

© Equty

© ErtitlementTem

® HoldingsTerm

© EquityDividendTerm

® EquityHoldingsTerm

[EqutyDividendTerm. InRespectOF
[EquityPreferredbividendamount

Equty
Percentage

| ExutyHoldings Terms RelateTa + EQuty
[votingRightsPershare : int

e
@ Percentags
[PercentageAmount

Float

T

[Equtynstrument HasRights

© Equitylnstrument.

EqutyHadngsTerm

@ Preferredshare

[Preferredshare HasEnttlementTerms

EquiyDividendTerm

Figure 5: Equity Terms for a Preferred Share

Note that the holdings rights and the entitlements both relate to the class of things called Equity, that is the equity in the company. The relationship between financial instruments as a whole and holder terms (seen on the previous diagram) is omitted for clarity.

Practical Development

Developing the Ontology

An ontology can be described as a taxonomy with relationships. However it is not a complete ontology until the relationship and properties defined for any given class will uniquely define what in the universe of all things is in that class, and what is not. Information on mutually exclusive ("disjoint") classes has to be added (these will show up as red lines in the diagram format used above). Other kinds of relationships are available, for example to show that a mother may have many daughters but a daughter may have only one mother.

The example shown above is by no means a complete ontology. The cash flows that the holder is entitled to are left out for clarity. Issuance terms, identification and so on are not shown, and we have not even considered market data terms. For some of these things the ontology may require further classes of "Thing".

The collection of classes in the business domain and relationships among these can be extended following this approach until the result is a complete ontology of securities related information. This can be used as the starting point for developing a securities data model. In development terms, it is a very powerful representation of the business requirements against which such a data model may be designed and developed, and may be used in place of the less powerful mechanism of a document based Requirements Specification, or the ad hoc spreadsheets commonly used within the financial industry to capture requirements.

The importance of developing an ontology is that, by defining classes of item in the business domain and defining logical relationships among them, the result is a structure in which each item has a real business meaning. This representation of business semantics means that the terms defined in this way can be mapped against any number of existing database and message structures, and against the (often implied) ontologies of new and legacy systems across the enterprise. This is preferable to mapping between data structures on a peer to peer basis. Such a representation of meaning can be used within the enterprise as a means to implementing an enterprise data management project, in preference to trying to create a single global data repository.

Developing a Data Model

The structure defined in the ontology may be used as a starting point for developing a data model for an application. Many of the distinctions made in the ontology, such as the preferred equity terms shown above, may not be needed for a particular application. To the extent that an application needs to validate the business logic within messages and data stores, the business relationships may need to be reflected in the data model. The data model will reflect the data needs of the application as it carries out a specific set of operations on the business data reflected in the ontology.

In developing a data model against such an ontology model, the designer can make good design decisions such as creating re-usable data components, grouping terms from different classes in the ontology and rationalising the use of relationships between data classes. The existence of a separate ontology model delivers all the benefits of a requirements specification (review, change management and so on) and allows the data model to be managed in the future with the confidence that it is able to handle all of the data business requirements, without for example accidentally deprecating support for a business requirement that is no longer known or remembered.

The ontology can be used as a starting position for the data model, with the items in the taxonomic hierarchy forming the classes that the modeller starts with. As soon as the modeller applies design decisions to the data model, the semantics of the terms in the data model will become weaker than they were in the ontology - for example two similar classes (say redemption schedule and coupon payment schedule) may be combined for design efficiency. As a consequence they will no longer have the same single business meanings that the individual classes had in the ontology.

This is not a problem, in fact it is good design. The ontology provides a record of the business meanings so that the data model doesn't have to. Recent developments of standards and other data models have attempted to reflect both the business meanings and the data model (either in UML or within XML message schemas), when either one of these can only be adequately dealt with at the expense of the other. Data models and XML schemas should not be considered suitable vehicles for modelling business semantics.

Summary

The breakdown of terms in the example ontology given here may seem unfamiliar at first. The definition of a class of "Thing" called contractual terms is not how most model designers would define the "Terms" of an instrument, however any set of terms which covers the issue of a security would use the terms set out in the prospectus by the issuer, and it is this which makes them contractual in nature. Extending this example into a full equities ontology would show that the full set of terms in the prospectus (and as amended from time to time by corporate actions) would exist in this taxonomic hierarchy of contractual terms, broken down into discrete sets such as holders' rights to cash flows (interest payment terms etc.), other rights and so on. Many of these contractual terms, particularly in complex instruments, would have relationships to other classes of real "Thing" such as cash flows, interest rates, benchmarks and underlying instruments or commodities. This approach would resolve the common issue of how to deal with these common recurring items in different parts of the terms hierarchy. It would also create the building blocks from which to build up complex new instruments on the fly or with vastly reduced system development turnaround times.

Similarly separating the Equity as an instrument from equity as equity in the issuing company allows for unambiguous definitions of those items, and for the addition of more detailed terms which would define these in full. Naming rules consistently applied across the taxonomy would ensure that terms can be easily understood and reviewed by business domain experts.

A data model which is agnostic to all present and future business applications must of necessity have no assumptions built into it. These would include assumptions about what data integrity checks may or may not be required in any one application. The only realistic way to achieve this is to have a model of the business reality itself, with no attempts to normalise or rationalise business terms and relationships. This is because any design optimisation of this nature will necessarily embody assumptions about what the design is for. A data model which relates to all business processes and applications would therefore be a model of the business ontology.

Recommendations

Ontology and Taxonomy

There are many benefits to defining an ontology of business terms and relationships, not least being that it is the best way to fully capture the actual business requirements against which any modelling is carried out. Modelling efforts which try to use other formats such as UML or XML to capture business requirements often get bogged down or become dependent on the technical expertise (and business knowledge) of one or two people to maintain what is intended to be a business requirements model. In addition, business requirements (whether for data or process) are not the same as something which is designed to meet those requirements, and combining these two into one format leads to a loss of maintainability of the design.

In order to create a usable ontology, one has to first define a taxonomy of terms. These two options are not an "either / or" choice, but a choice of what level of detail to apply when modelling the business reality. Breaking the business facts down into a taxonomic hierarchy of real "things" allows for the creation of robust data models, regardless of whether or not an ontology is needed. It also allows for reference to existing taxonomies of real world things that are already standardised (such as the CFI taxonomy).

Adding business relationships and other logic functions to the taxonomy to make it an ontology allows for a richer variety of business facts to be represented. Many of these may not be needed in a data model but may for example be referred to in program or messaging design. They must however be business relationships. Other kinds of relationship, or optimisation of business relationships into a design, can be carried out during design but should not be reflected in the business semantics model.
Once a taxonomy or ontology is created, this can be imported into a UML editing tool to form the basis for development of a data model. It is also possible to maintain an ontology directly in a UML editor using standard UML extensions which have been developed for OWL modelling. This model should be maintained in a separate UML Package or as a separate model, in order to make clear that it is of a different nature to any data model designs elsewhere in the UML universe.

Use of Standards in creating Taxonomies

Terms which are defined elsewhere in the standards world (such as the ISO 10962 CFI standard) should be used in the creation of new taxonomies of financial instrument data, as long as they represent classes of real "thing". Other standards models may be usable to the extent that taxonomic hierarchies can be identified. It may also be possible to use business relationship information or ontological information from existing standards however in practice many of these either do not have this sort of information, or have it in a form that cannot be distinguished from model or schema design constructs.

Appendix I - Tools and Formats

The formats used in this paper (OWL and RDFS) cover both taxonomy and ontology. There are least two tools (Protégé and TopBraid) which can deal with these formats, with seamless transition between the two tools. This Appendix summarises the tools and file conversions for modelling taxonomy classes in a UML Class model and importing into TopBraid for use as the basis of an ontology.
Starting point: Rational Rose .mdl file.

Step 1:

Xpetal (Reference 7) can be used to turn .mdl files into RDF Schema.

Step 2:

An RDF Schema file can be imported into the TopBraid Composer OWL editor (reference 6).

If there is no base URI allocated to the file TopBraid Composer will offer to add one. Allocate a namespace based on a chosen URI with the original filename (suggested by default) as the last part of the URL. Set this to include the string "/example/" to avoid possible confusion with any "real" ontologies that are produced later on.

e.g.

http://www.yourstuff.org/example/rosename.rdf#

The result is a copy of the UML Class Model in RDF Schema.

Class Inheritance relationships will be retained where these existed in the UML as specialisation relationships. Aggregation and Association relationships should be viewable as Properties in the RDF Schema file.

Step 3

The next step is to use a feature in TopBraid Composer to convert the file to an OWL ontology. The result of this is an OWL file, but still stored in the RDF Schema file format. Data classes which represent real world entities may now be promoted be sub-classes of owl:Thing which is the top-level in the taxonomy in OWL.

There may be a number of error messages as a result of the tool being unable to distinguish whether certain attributes were to be converted to Annotation Properties or Datatype Properties. Object Properties (which represent relationships) should be interpreted correctly by the OWL conversion.

It is possible to add OWL ontology features such as disjoints to sibling classes in the class hierarchy. These features are explained in the Ontology section.

Step 4

It is also possible to convert this ontology into the OWL file format, which allows it to be consumed by the Protégé tool (reference 8) (using OWL extensions to that tool) very easily.

More detail on technical considerations and file conversions are beyond the scope of this paper.

References

1. The World Wide Web Consortium

http://www.w3.org

2. OWL Web Ontology Language

http://www.w3.org/2004/OWL/

3. Resource Definition Framework (RDF) vocabulary description language, RDF Schema

http://www.w3.org/TR/rdf-schema/

4. "Ontology Development 101: A Guide to Creating your First Ontology" by Natalya F Noy and Deborah L. McGuinness, Stanford University (2001?)

http://protege.stanford.edu/publications/ontology_development/ontology101.html

5. CFI: Classification of Financial Instruments

http://www.anna-web.com/ISO_10962/iso10962.htm

6. TopBraid Composer

www.topbraidcomposer.com

7. Xpetal

http://www.langdale.com.au/styler/xpetal/

8. Protégé and Protégé OWL extensions

http://protege.stanford.edu/overview/protege-owl.html
Equity

Equity security

Instrument Terms

Financial Instrument

Is a kind of

Has rights defined in

In relation to

© Hypercube Limited 2007
Page 3 of 16

